[PAPER REVIEW 231226] DialogueRNN

2023. 12. 26. 02:41·Paper Review

DialogueRNN: An Attentive RNN for Emotion Detection in Conversations

https://arxiv.org/pdf/1811.00405.pdf

Navonil Majumder, Soujanya Poria, Devamanyu Hazarika, Rada Mihalcea, Alexander Gelbukh, Erik Cambria

 

1. Raising a Problem

Current emotion detection systems in conversations,

including the SOTA method, CMN (Conversational Memory Networks, Devamanyu Hazarika's previous research),

1) do not distinguish different parties

2) are not aware of the speaker

 

2. Proposing their New Solution

1) Assumption

There are 3 major aspects relevant to the emotion in a conversation: 

(1) the speaker

(2) the context of the preceding utterances

(3) the emotion of the preceding utterances

 

2) Model Architecture

DialogueRNN employs 3 GRU(Gated Recurrent Units)

 

(1) Global GRU

a. Input: all preceding utterances

b. Output: encodes the context

 

(2) Party GRU

a. Input: previous party state & global GRU's output (= the context)

b. Output: encodes current party state (= current speaker's state & current listener's state)

 

(3) emotion GRU

a. Input: previous emotion representation & current speaker's state

b. Output: decodes current emotion representation

 

3) Implementation

 

(1) get Utterance Representation using CNN (Convolutional Neural Networks)

a. 3 convolution filters (size: 3, 4, 5 / feature-maps: 50)

b. max-pooling

c. ReLU (Rectified Linear Unit): activations are concatenated

d. a 100 dimensional dense layer

* trained at utterance level with the emotion labels

 

(2) Party GRU

a. Speaker Update: as described above

b. Listener Update: keep the state unchanged

 

(3) Emotion Classification

a. 2 layer perceptron

b. Softmax layer (6 emotion class)

 

(4) Training

a. Cost function: categorical cross-entropy + L2 regularization

b. Optimization: stochastic gradient descent based Adam 

 

3. Experiment

1) Datasets

a. IEMOCAP (train: 80%, test: 20%)

b. AVEC (train: 80%, test: 20%

 

4. Performance of the New Solution

DialogueRNN outperforms existing SOTA contextual emotion classifiers

Party State contributed the most to performance, followed by Emotion GRU

 

5. Error Analysis

a significant amount of errors occur at turns having a change of emotion from the previous turn

further research on these cases is needed

'Paper Review' 카테고리의 다른 글
  • [PAPER REVIEW 231231] emoji2vec
  • [PAPER REVIEW 231228] NLP review paper
  • [PAPER REVIEW 231221] Recent Trends in Sentiment Analysis and Emotion Detection
  • [PAPER REVIEW 231113] ELECTRA(2020)
Sungyeon Kim
Sungyeon Kim
goldstaryeon@sookmyung.ac.kr
Sungyeon Kim
Sungyeon Kim
Sungyeon Kim
전체
오늘
어제
  • 분류 전체보기 (618) N
    • Paper Review (30)
    • Research Record (9)
    • Study Record (143)
      • Cybersecurity (79)
      • AI Data Science (28)
      • Computer Science (24)
      • Linear Algebra (6)
      • SQL (5)
      • LaTeX (1)
    • English Transcription (260)
    • 한글 필사 (100) N
    • 날것 그대로의 생각들 (72)

인기 글

최근 댓글

최근 글

hELLO· Designed By정상우.v4.5.3
Sungyeon Kim
[PAPER REVIEW 231226] DialogueRNN
상단으로

티스토리툴바

단축키

내 블로그

내 블로그 - 관리자 홈 전환
Q
Q
새 글 쓰기
W
W

블로그 게시글

글 수정 (권한 있는 경우)
E
E
댓글 영역으로 이동
C
C

모든 영역

이 페이지의 URL 복사
S
S
맨 위로 이동
T
T
티스토리 홈 이동
H
H
단축키 안내
Shift + /
⇧ + /

* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.