1. Determinant
Laplace expansion = 3*3 matrix의 determinant를 2*2 matrix의 determinant로 정의할 수 있다.
det(A) != 0 -> A is invertible (역행렬 존재x)
det(AB) = det(A)det(B)
det(A) = det(AT)
det(A^-1) = 1/det(A)
2. Trace
matrix의 diagonal 다 더한 형태
tr(A + B) = tr(A) + tr(B)
det(A) = eigenvalue들의 곱셉
tr(A) = eigenvalue들의 덧셈
3. Cholesky Decomposition
A = L LT
for a symmetric, positive definite (all eigenvalues > 0) matrix A, A = LLT
L = lower-triangular matrix with positive diagonals
such L is unique, called Cholesky factor of A
det(A) = det(L)det(LT) = det(L)^2
det(L) = multiplication of diagonal entries
det(A) = multiplication of (diagonal entries)^2
4. Diagonal Matrix
1. EVD (EigenValue Decomposition)
계산하기 매우 간편 -> 일반 matrix도 diagonal matrix와 비슷하게 만들 수 없을까? -> diagonalizable
if A is symmetric -> A is orthogonally diagonalizable
if A is symmetric
1) the eigenvalues are all real
2) the eigenvectors to different eigenvalues are perpendicular
A = PDPT
그렇다면 symmetric 아닌 matrix는?????
2. SVD (Singular Value Decomposition)
EVD는 symmetric에만 적용 가능하지만, SVD는 전부 적용 가능
S = AT A is always symmetric, positive semidefinite.
S에 대해서 EVD를 하는 것!!
A = USVT
AT A = VDVT